Gerbes, Clifford Modules and the Index Theorem
نویسندگان
چکیده
The use of bundle gerbes and bundle gerbe modules is considered as a replacement for the usual theory of Clifford modules on manifolds that fail to be spin. It is shown that both sides of the Atiyah-Singer index formula for coupled Dirac operators can be given natural interpretations using this language and that the resulting formula is still an identity.
منابع مشابه
On the Relationship of Gerbes to the Odd Families Index Theorem
The goal of this paper is to apply the universal gerbe of [CMi1] and [CMi2] to give an alternative, simple and more unified view of the relationship between index theory and gerbes. We discuss determinant bundle gerbes [CMMi1] and the index gerbe of [L] for the case of families of Dirac operators on odd dimensional closed manifolds. The method also works for a family of Dirac operators on odd d...
متن کاملVanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملFusion of Symmetric D-branes and Verlinde Rings
We explain how multiplicative bundle gerbes over a compact, connected and simple Lie group G lead to a certain fusion category of equivariant bundle gerbe modules given by pre-quantizable Hamiltonian LG-manifolds arising from Alekseev-Malkin-Meinrenken’s quasiHamiltonian G-spaces. The motivation comes from string theory namely, by generalising the notion of D-branes in G to allow subsets of G t...
متن کاملGravitational anomalies, gerbes, and hamiltonian quantization
In ref.[1], Schwinger terms in hamiltonian quantization of chiral fermions coupled to vector potentials were computed, using some ideas from the theory of gerbes, with the help of the family index theorem for a manifold with boundary. Here, we generalize this method to include gravitational Schwinger terms.
متن کاملGENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
متن کامل